

Australian Government Department of Defence Science and Technology

Augmentation of the Slow-Time k-Space for Narrowband High-Resolution Radar Imaging

NATO SET-265 RSM Specialist Meeting, Salamanca, Spain 7 May 2019

Dr. Hai-Tan Tran

National Security & ISR Division, DST Group Edinburgh, Australia.

haitan.tran@dst.defence.gov.au

Outline

- Problem formulation
 - Signal model
 - Standard Doppler Radar Tomography (DRT) theory
- The slow-time k-space
 - Brief theory
 - Augmented DRT
- Application of Compressive Sensing OMP
- Demonstration with Experimental Data

Problem Formulation – Signal Model

- Current treatment restricted to 2D Imaging & monostatic configurations.
 - Readily extended to multistatics & 3D
- Uses the far-field approximation
- Requires ultra-narrowband radar
 - Doppler processing only
 - Low sampling rates (lower system cost)
 - Motion compensation involves only relative target *velocity*.
- Imaging aperture defined by relative target rotation (or variation of aspect)
- Cross-range bandwidth:

 $B_{\perp} = f \ \Omega_e T_{CPI} = f \ \Delta \theta$

Non-linear effects compensation

DST

Standard Doppler Radar Tomography (DRT)

- Dates back to the 1980s (Mensa et al)
- Algorithm 4 main steps:
 - Time-domain data segmentation
 - Translational motion compensation
 - Populating the (slow-time) k-space
 - Image inversion
- Image inversion:
 - Traditionally can be via "filtered back projection" technique
 - More modern/powerful technique: the non-uniform FFT

Notes:

Limited to small angles of rotation for each segmented CPI

10 **1**0

b. **b**.

Require extensive total angular coverage

Augmented *k*-space & Augmented DRT

Extent of *k*-space

$$k_s \in \left(-\frac{2\pi f}{c}\Delta\theta, \frac{2\pi f}{c}\Delta\theta\right)$$

□ Larger $\Delta \theta$ requires compensation of nonlinear phase terms

$$r_m(t_k) = y_m + x_m \Omega_e t_k - \frac{1}{2} y_m \Omega_e^2 t_k^2 + \cdots$$

- Except for the longer CPIs (and associated compensation processing) the Augmented DRT algorithm consists of <u>the same</u> steps as Standard DRT.
 - Application of Compressive Sensing (sparse signal reconstruction)

DST

Application of Compressive Sensing - OMP

Use longer segmented CPIs – valid for chirp signal approximation – higher cross-range BW

 $B_{\perp} = f \Delta \theta$, $\Delta x = c/2B_{\perp}$

- In each CPI, solve for a sparse representation with chirp atoms
- Set up a chirp dictionary Ψ − a 2D parameter space
- Solve the sparse reconstruction problem with OMP
- Focusing action: replace all chirp atoms in the sparse solution with single-tone sinusoid functions with Doppler frequency at the mid-point of the segmented CPI;
- Compute the focused cross-range profiles $p_{\theta_l}(x) = |\mathcal{F}\{\tilde{s}_R(t_k)\}|$

6

Apply the usual steps of Standard DRT Algorithm

 $s_R(t_k, f) \propto \exp\left\{-j4\pi f \frac{R_0(t_k)}{c}\right\} \sum_{m=1}^{m} \sigma_m \exp\left\{-j\frac{4\pi f}{c}r_m(t_k)\right\}$ $r_m(t_k) = y_m + x_m \Omega_e t_k - \frac{1}{2} y_m \Omega_e^2 t_k^2 + \cdots,$ $S_{\rm D} = \Psi \sigma + \epsilon$ $g(k) = \exp\left\{-j2\pi \left(f_g t_k + \frac{1}{2} c_g t_k^2\right)\right\}$ $f_g = rac{2 \ x \ \Omega_e}{\lambda}, \quad c_g = rac{2 \ y \ \Omega_e^2}{\lambda}$ $\tilde{s}_{\mathbf{R}}(t_k) = \sum_{k=1}^{M} \sigma_m g_m(t_k) \Rightarrow \sum_{k=1}^{M} \sigma_m \tilde{g}_m(t_k).$ $\tilde{g}_m(t_k) = \exp\left\{-j2\pi f_g^{(mid)} t_k\right\}$

An Experiment

- Used a wideband stepped-frequency waveform, X-band, 8 - 12 GHz, over 101 steps.
- Transmit and receive horns on robotic arms
- Target is two metallic rods, on a rotating pedestal, approx. 19 cm apart and 11 cm from rotation centre,
- Signal sampled at every 0.1 deg angular steps
- Fast rotating targets can be <u>emulated</u> from this start-stop data collection.
- Also included bistatic configurations

h-

 Only monostatic channel, and single frequencies, are used in this work.

h- h-

ŀ

b-

÷-

With sincerely thanks to Lorenzo Lo Monte & Nihad Alfaisali, and the Mumma Laboratory at University of Dayton, Ohio, USA, for collecting and providing the experimental radar data in May 2016.

Imaging Results – Standard DRT

Science and Technology for Safeguarding Australia

0

x (m)

0.2

-0.2

0

-0.4

-2

-4

-6

-8

-10

0.4

8

8

Imaging Results – Standard DRT (with longer CPIs)

Imaging Results – Augmented DRT

Discussion Points

- Compared to wideband imaging techniques, translational motion compensation for DRT imaging is simpler
 - o Only velocity compensation
 - Extension to multistatics is less sensitive to phase errors
- Numerous other sparse reconstruction techniques can be used
- Atoms can be defined in polar formats
 - Prior knowledge about expected locations of atoms can be used to confine parameter space to small intervals faster to process.
- Real targets are often not ideal point scatterers
 - o Artefacts may appear
 - o Need more advanced theory
- Real targets consist mostly of <u>off-grid</u> scatterers
 - Need further special processing for refocusing
- Higher augmentation factors require compensation for higher-order terms (beyond the linear chirp approximation)

Challenges

Advantages

Concluding Remarks

- A novel theory for Augmented DRT and the slow-time k-space is presented
- Performance demonstrated with experimental radar
- A potentially robust solution for high-resolution narrowband imaging
 - And effective response to the increasingly congestive RF spectrum
- Other sparse reconstruction techniques of CS can be useful for Augmented DRT imaging

Computational cost

- For 2D imaging, the dimensionality of the parameter space for CS is 2 computational cost should be manageable.
- Atoms and CS dictionary can be defined in multiple forms further cost reduction can be achieved.

Thank You

With the team at the Mumma Laboratory at University of Dayton, Ohio, May 2016.

₿÷

<u>ا</u>

ŀ

13

ŀ

₽

ŀ

Ŀ.

1. i. i.

▶ ▶ ▶

DST Science and Technology for Safeguarding Australia